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Overview of the chapter
The ability to confidently fit models to indifference point data requires expertise in behavioral analytic
concepts and statistical modeling. Since many readers of this book may have more primary training on
the behavioral side of things, the purpose of this chapter is to de-mystify the process of fitting discounting
models to observed data. There will be a special emphasis on fully reproducible code that allows the reader
to execute the analyses described herein. The chapter features instructive prose, a real world data set, and
snippets of R code which will enable the interested reader to practice analyzing data.

This chapter provides a tutorial that the reader can follow towards analyzing discounting data. Previous
chapters have already described the breadth of outcomes associated with discounting (Odum et al. 2020)
and other background information (Odum 2011). We focus on delay discounting, where indifference points
describe the value of a delayed reward that a participant would be willing to accept in order to have the
reward immediately for a variety of delays. This chapter describes the two-stage approach to analyzing
discounting data, as this is the simplest approach that is also statistically defensible. The two-stage approach
first quantifies the discounting rate of each participant individually, and second stage analyzes these rates as
a function of relevant variables (e.g., between smokers and non-smokers).

We use the R software (R Core Team 2022) to illustrate the analyses presented in this chapter. While several
software choices are available, we choose R because it is a free and robust statistical modeling package.
Especially compared to point-and-click menu driven software, R’s programmatic approach to data analysis
enables more control, creativity, and naturally facilitates reproducibility and transparency since the code
that conducts an analysis can be archived and re-run later and/or by different users. Despite this chapter’s
commitment to R, don’t conflate the data-analytic approach with the tools used to execute the analysis.
Other software packages exist that are just as capable of organizing and visualizing data, fitting models, and
conducting other statistical analyses.

Several approaches have been used to analyze multi-subject behavioral economic data. An overview of these
approaches in the context of demand can be found here (Kaplan et al. 2021). Much of the terminology in
this paper (especially the terms defined in Table 1 of that paper) is extremely relevant for the analysis of
discounting data. In addition, if the reader is interested in learning about quantifying behavioral economic
demand data, please see Chapter 5 - Quantitative Models of Demand in this book.

The study of discounting is vast and no single chapter can cover everything. Once the skills in this chapter
are familiar, the reader may wish to next consider: Additional models for delay discounting (McKerchar et
al. 2009), Model selection including the tension between model fit and theoretical appeal of models (Franck
et al. 2015), probability discounting (Rachlin et al. 1986; Rachlin, Raineri, and Cross 1991; Killeen 2023),
hierarchical modeling (M. E. Young 2017; Chávez et al. 2017), useful cross-model metrics of delay discounting
(e.g., Effective delay 50 (Yoon and Higgins 2008; Franck et al. 2015), area under the fitted curve (Gilroy and
Hantula 2018)) , and Bayesian statistical approaches for delay discounting (Franck et al. 2019).
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How to use this chapter
The remainder of the chapter is a tutorial. The next step is to download R (https://www.r-project.org/)
and the free interface program RStudio (https://posit.co/downloads/). You can easily find a three minute
long video on the internet that explains how to download and install R and RStudio for either PC or Mac.
Once that is complete, come along on the journey by running the embedded code as you encounter it in the
chapter.

We alternate between descriptive prose, lines of R code that run statistical analyses, the results of those
analyses, and a description of those results. We reserve bold font for terms that, if unfamiliar, can be
Googled by the reader to better understand the context of what is being presented. This chapter is designed
to be a pathway, but on your journey, stopping to read more about related concepts is the equivalent of
sight-seeing. We conclude the chapter with a series of exercises to give the reader the opportunity to flex
their new knowledge. Treating these exercises like homework might even make you feel like a kid again.

Please note that this chapter is a broad overview of many topics and is not organized to reflect a typical
research analysis pipeline. Many planning steps and other considerations must take place before responsible
data analysis, and these issues are described further later in the chapter in the Contemporary issues in
statistical practice and The role of planning in scientific investigation Sections.

R and RStudio
R is a free programming language, and RStudio (https://posit.co/) is a convenient graphical user interface for
R with a free individual use license. Once R and RStudio are installed on your machine, you open RStudio
and it automatically connects with R. All R programming, running of code, and other analysis happens
within RStudio.

Figure 1: Rstudio interface. Top left pane is the script, bottom left pane is the console, top right pane shows
the (currently empty) environment, and bottom right pane can show help files and data visualizations.

The above Figure depicts the Rstudio interface. The top left pane, which is blank, is the script. This is where
the user (you) writes R code. A good way to follow along with the demos below is to copy and paste the
code from this chapter into the R script, modify as necessary (e.g. change file paths), then run the code. On
PC, the line of code with the cursor can be run by pressing “Ctrl+Enter”. On Mac, press “command+return”
to run the current line of code. On both platforms, you can run multiple lines of code by highlighting those
lines you wish to run before using the run commands just described. R is case sensitive.
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The bottom left panel is the console. When lines of code are run from the script, those lines appear in the
console followed by R’s reaction to those lines. To familiarize yourself with this, first treat the console as a
simple calculator. Type “2+2” directly into the console, press “Enter” (“return” on Mac), and note that R
comes back with “4”. Now write “2+2” in the script, press “Ctrl+Enter” (“command+return” on Mac), and
you will see the same results appear in the console. You will frequently find yourself in a workflow loop in
which you enter commands into the script, submit them to the console, then assess the outcome of those
commands by checking the console for results and any warning or error messages (which you should Google
to help you understand and resolve).

The top right panel of RStudio shows the environment by default. The environment lists each object the
user has defined along with some basic information about those objects. Objects include data the user may
have imported, any functions they have written, any variables that are stored, etc. The bottom right panel
can be used to show graphical output and help files. Keep your eyes on the top right and bottom right panels
as you run the code below to get a feel for the role these panels play.

We could fill the rest of the chapter describing R and Rstudio and not run out of things to talk about. But the
purpose of this chapter is to describe the analysis of discounting data. The reader is encouraged to liberally
use other available R resources alongside this chapter as necessary, but for now, we turn our attention towards
the analysis of discounting data.

Use R to import and examine data
Let us now import the study data. The data analyzed in this chapter were gathered as part of a larger study
(Traxler et al. 2022). These data are currently available from the author’s website. Before replicating the
analysis below, be sure you have downloaded the data and stored it in the folder of your choice on your
computer. The first line of code below indicates to R which folder stores the data. You will need to modify
this line to reflect the data file’s location on your own machine. The second line defines an object called
dat, which contains the full set of data used in this chapter. Copy-paste the following code into an R script,
change the “setwd” directory to reflect the location of the data on your own machine, and run the code.
setwd("C:/Dropbox/Discounting book chapter/Rmarkdown") #set working directory
dat<-read.csv('Traxler 2022.csv') #define an object "dat" that is the data

The pound sign “#” is used in R to denote comments. Comments are not evaluated by R, which makes them
useful for humans to write messages to each other within the code (as seen above), and also to indicate to R
if you wish to omit certain lines of code from being evaluated. This second use is important for debugging.
Essentially all computer programming languages include the ability to write comments, and thus commenting
is a general programming concept.

It is important to examine the data post-import to make sure that the file was read correctly. You can
examine the full set of data by clicking the “dat” entry in the environment pane (top right), or running the
following command in the console:View(dat). This will create a tab in the top left pane that shows the study
data in a spreadsheet.

Click the “dat” entry in the environment pane now, and confirm you are able to observe the following. This
data set includes as columns id number, Age (years), gender (“Male” or “Female”), and smoking status
as “smoke_cigs” (“Yes” or “No”). The data set also includes indifference points gathered at six delays
using hypothetical delay discounting titrating questionnaire. The delays are one day, one week, one month,
three months, one year, and five years. These indifference points are labeled y1, y7, y30, y90, y365, and
y1825, respectively. Note that these indifference points are expressed on a scale between zero and one, as
the raw indifference points have already been dived by the larger later amount in the production of this
data set. An attention check question “ddattend” was asked to determine which participants would choose
“$0.00 now” versus “$100.00 in 1 day”. Choosing no money over one hundred dollars tomorrow reflects a
participant who didn’t understand the task, was not being attentive to their answers, or for other reasons is
exhibiting irrational patterns of valuation. The data also include indifference points that violate the Johnson
& Bickel criteria (Johnson and Bickel 2008), and the presence of these violations is included in the ‘JBviol’
column. Additional description of attention checks and non-systematic discounting patterns appears in the
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next subsection on first stage analyses. Each row in this spreadsheet contains the data from a single research
participant.

There are two lines of code below that offer additional information about the data. The first line uses the
“class” function to indicate that the data object is stored as a data frame. Data frames are the typical data
format for rectangular data objects in R. Data frames store variables in the columns and data records (i.e.,
participant data) in the rows. Data frames can can include both numeric or character variables, e.g. our data
has character variable “gender” which takes the values “Male” or “Female”, and numeric data for age and
many others. The class function is used on R objects in general to reveal the type of object. R is able to
recognize different object types, including character variables, numeric variables, vectors of numbers,
matrices, data frames, lists of different types of objects, models, and many more. A good first debugging
step when faced with warnings and error messages is to check the type of objects being used.

The second line uses the “dim” function to reveal that there are 106 rows (participants) and 13 columns
(variables) in the data set.
class(dat)

## [1] "data.frame"
dim(dat)

## [1] 106 13

These data are considered to be in wide format, since the identifier for participant id does not repeat in
different rows. Each row corresponds to the full data available for a single participant. The first row, for
example, tells us the age, gender, smoking status, indifference points, and attention and data quality checks for
the first participant. Data in which the same participant ID occurs on multiple lines (e.g., if each participant
completes assessments multiple times) are said to be in long format. Choice of wide versus tall format is
frequently made based on the software tools the analyst plans to use, and R functions exist to readily switch
between formats. Recognizing the data format is an important early step since it enables the researcher to
know how to write the code to conduct the analysis.

Stage 1 analyses

The first stage of a two-stage analysis involves quantifying the rate of discounting for each participant on
the basis of their indifference points. To accomplish this, we first analyze a single participant’s indifference
point data. This includes graphically plotting their indifference points by delay, then fitting a discounting
model, adding the model fit to the plot, and finally extracting the discounting rate for subsequent analysis in
stage two. Don’t worry about the fact that we have to do this 106 times. Once we have the first subject’s
Stage 1 analysis complete, we will show how to tweak and embed that code in a loop that atomically and
near-instantaneously conducts the same analysis for the remaining 105 participants and stores the results in
a format convenient for Stage 2 analysis.

Now we plot the first participant’s data. Note the “<-” is an assignment statement used to define new objects
(see how it looks like a little arrow). So the first line creates a new object called “i” which takes the value “1”.
i<-1 #Set an index number to 1 for the first subject
y.frame<-dat[i,5:11,drop=FALSE] #ith row, columns 5 through 11
y.frame #Check indifference points

## y1 y7 y30 y90 y365 y1825 y9125
## 1 0.4922 0.9922 0.9454 0.8984 0.8984 0.3984 0.1016
y<-as.vector(as.matrix(t(y.frame))) #Make y a vector
D<-c(1,7,30,90,365,1825,9125) #Define the delays D
plot(D,y, #scatter plot. First argument is horizontal axis, second is vertical axis

xlab='Delay (days)',ylab='Indifference point') # Label axes
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Our plot for the indifference points and delays of the first participant reveals that generally, as delay increases,
indifference point decreases. There is a notable jump between one day and one week delay, however. One
might expect that indifference points would get lower and lower as delay increases (reflecting the reduced
utility a larger later reward has at longer delays). In practice, not all observed discounting data follow this
trend. Unusual or unexpected discounting patterns might emerge due to lack of attention on the part of
the participant, a single mistaken response early in a sequence of a titrating questionnaire, the participant
having failed to understand the task’s directions, or due to other considerations a participant has that the
experimenter cannot be aware of (e.g. an unexpectedly high indifference point might be due to an upcoming
event like a medical bill the participant is thinking about.)

Visualizing discounting on the log-delay scale

If you are anything like me, your first algebra teacher tried to tell you how important the logarithm function
is. You ignored them since you figured you’d never use this abstract information on a daily basis. If you are
reading this sentence, then the day has arrived when you will be using the logarithm function on a daily basis.

The logarithmic function (which is the inverse function of the exponential function) is central to modern data
analytic practices. It simplifies mathematical optimization, computationally stabilizes numbers extremely
close to zero, and aids in visualization for many types of analyses in many fields, including visualizing delay
discounting data by log transforming delay. In the present case, we have a troublesome vertical jump among
the indifference points early in the delay sequence that is incredibly difficult to appreciate visually in the
scatter plot above. Let us consider the same scatter plot but put the natural log of delay on the horizontal
axis.
plot(log(D),y,

xlab='ln(Delay)',ylab='Indifference point') # Label axes
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(Brief note: In R syntax, “log()” is the natural log function (frequently denoted “ln()” mathematically), while
the “log10()” function is log base 10 in R.)

The logarithm function spreads out numbers that are closer to zero, and compresses numbers that are further
from zero. Thus, very short distances between delays early on (such as one day and one week) get spread
out while more remote distances (e.g. five years and 25 years to the right side of the panel) are compressed
when the log is taken. Thus, the reader can see that on the natural log scale, delays are more equally spaced
and we can assess patterns of indifference points among the shorter delays with much greater ease. (Further
information and exercises to review the logarithm function can be found at the end of this chapter.)

Specifically, we can now easily see that the first participant’s jump in indifference point between a day and
a week is very large, indicating the apparent contradiction. This participant reports quickly devaluing a
reward for a delay of 1 day but exhibiting essentially no discounting of a reward in a week. This is not the
idealized behavior we expect for delay discounting, and this jump violates one of the Johnson & Bickel criteria
(Johnson and Bickel 2008).

The purpose of the Johnson & Bickel criteria is to give researchers a simple method to identify patterns of
indifference points that may be inconsistent with expected behavior of delay discounting. Quoting that paper,
the Johnson & Bickel criteria would flag a data set if: “. . . either or both of the two following criterion were
met: 1) if any indifference point (starting with the second delay) was greater than the preceding indifference
point by a magnitude greater than 20% of the larger later reward. . . ” and “2) if the last (i.e., 25-year)
indifference point was not less than the first (1 day or 1 week, depending on the study) indifference point by
at least a magnitude equal to 10% of the larger later reward. . . ”

As with any other data-analytic exercise focusing on unusual data points, outliers, etc. the decision about
how to proceed with analysis in the face of unexpected, unusual, or atypical data is ultimately subjective, but
should be considered prior to conducting analysis. Going forward, we will analyze the full set of data without
excluding participants who violate of Johnson & Bickel criteria or attention checks. This is meant to illustrate
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overall analyses without being overly prescriptive about how to handle non-systematic data. Note that there
are exercises at the end of the chapter that guide the motivated reader to re-conduct the presented analyses
with various exclusion criteria in place and to determine to what extent changing exclusion criteria can alter
the analysis conclusions. Inclusion criteria are set prior to analysis in a typical study and not second-guessed
midstream. In research practice, one does not simply change things at will and try every combination of
analyses until a preconceived conclusion is reached. This is called “p-hacking,” and more information can be
found in the Contemporary issues in statistical practice Section below.

We shouldn’t automatically delete any data which is unusual, because it is still valid if collected according
to the research protocols. However, be mindful about situations in which a small number of data points
yield an out-sized influence on study conclusions is also not ideal. The point of statistical analysis is to
aggregate information from many subjects to make broader conclusions about the population as a whole, and
if a few individual data points change or obscure our view of the entire picture, have we really focused on
the broader population or just a handful of unusual points? Perhaps unsurprisingly, decisions about how to
handle participant data that does not follow expected discounting patterns can impact the final conclusions
of a study.

We next turn our attention to fitting discounting models. Several models have been proposed. We first
illustrate the widely used hyperbolic discounting model, sometimes referred to as the “Mazur model” (Mazur
1987), which is

E(y) = A

1 + k ∗ D
,

where E(y) is the expected value of the indifference point y, i.e., the regression line value at delay D. The
value A is the amount of the delayed reward, and k is the discounting rate. Note that the hyperbolic model
fits the data in terms of un-logged delay, not ln(Delay) as was previously visualized. If k = 0 then the
participant does not devalue the reward as a function of delay. The data we analyze in this chapter has A
already, so our indifference points are between zero and one and A is replaced by 1 subsequently.

The hyperbolic discounting function is just one example of a functional form that describes delay discounting.
Exercise (2) at the end of this chapter explores another popular discounting function. For more information
on other discounting functions, see (McKerchar et al. 2009).

When interpreting the output of data analyses and drawing inferences to populations larger than the sample
that was collected, it is vitally important to clearly distinguish between unknown population parameters and
sample statistics that estimate those parameters. The parameter k is unknown and must be estimated on
the basis of delay data D and indifference point data y. We follow the convention in most statistical texts
by denoting data-based estimates of unknown parameters with a hat. Thus, we use the symbol k̂ to denote
the data-based statistics that estimates the true (but unknown) parameter k. We follow this convention for
parameters throughout this chapter.

To begin to make some of the above statistical concepts more concrete, we now fit the Mazur model to the
first participants’ data using nonlinear regression via the “nls” (which stands for “nonlinear least squares”)
function. We will fit the model, plot the fit alongside indifference points, and extract the estimated discounting
rate k̂.
mod<-nls(y~1/(1+k*D),start=list(k=.1)) #Fit the Mazur model to these data
mod #View the estimated value of k

## Nonlinear regression model
## model: y ~ 1/(1 + k * D)
## data: parent.frame()
## k
## 0.0007053
## residual sum-of-squares: 0.2733
##
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## Number of iterations to convergence: 8
## Achieved convergence tolerance: 2.116e-06
#Verify computation of residual sum-of-squares
sum(((y-predict(mod))ˆ2))

## [1] 0.2732825

The above code creates an object called “mod” that stores the results of a nonlinear regression. The R syntax
y ∼ 1/(1 + k ∗ D) indicates that we want to fit indifference points y as the outcome variable with the model
form following the Mazur model. By running the object “mod”, we see a reminder of the form of the model
we chose (useful when several models are being considered), an estimate k̂ = 0.0007053, residual sum of
squares (which quantify the sum of squared residuals, i.e. the vertical distance between each point and a
regression line squared and added up), and some information about model convergence. We say more about
least squares and the model fitting that is happening “under-the-hood” in a few paragraphs.

Speaking candidly, I have always had difficulty intuitively understanding the discount rate k. For this
participant, the estimate k̂ = 0.0007. The discounting rate k is higher among individuals who discount
rapidly, and lower among individuals who do not. Beyond that, k is not particularly interpretable for most
people. A related metric, called the Effective Delay 50 (ED50) describes the length of delay for which the
participant would forfeit half of the larger later reward to have the reward immediately (Yoon and Higgins
2008). Conveniently, ED50 = 1/k when the Mazur model is in use. Thus, a data-based estimator for ED50 is

ˆED50 = 1/k̂. Effective delay 50 is important due to its interpretability, the fact that its interpretation is
the same among competing discounting models (Franck et al. 2015), and for its role and implementation
in the development of a very brief but effective discounting questionnaire (Koffarnus and Bickel 2014) that
titrates to ED50 then infers k̂ based on the form of Mazur’s model rather than by obtaining indifference
points directly.

Now let’s have a look at the line of best fit for these data and also visualize and compute ED50. For longer
code chunks like this one, feel free to run the code one line at a time to learn how each command works.
D.s<-seq(0,9500,1) #Create a fine grid across delays. Used later to plot the regression line.
preds<-predict(mod,newdata=data.frame(D=D.s)) #Obtain predicted values for each grid point
plot(D,y,xlab='Delay (days)',ylab='Indifference point',

main="Indifference points, model fit, and ED50") #Scatter plot
lines(D.s,preds,col='red') #Add the regression line to the plot

##Add a legend
legend(x=4500,y=.8,legend=c("Indifference point","Regression line"),col=c("black","red"),

pch=c(1,NA),lty=c(NA,1))

k.hat<-summary(mod)$coef[1,1] #Store k.hat
ED50=1/k.hat #Store ED50
k.hat

## [1] 0.0007052959
ED50

## [1] 1417.845
#Add lines and text to illustrate ED50
lines(x=c(ED50,ED50),y=c(0,0.5),lty=3)
lines(x=c(-2000,ED50),y=c(0.5,0.5),lty=3)
text(2700,0.54,paste('ED50 =',round(ED50),'days'))
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ED50 = 1418 days

We estimate ˆED50 = 1
k̂

= 1418 days. The plot includes the indifference points, the nonlinear regression
line, and a visual depiction of the ED50 value which corresponds to the point on the regression line where
indifference point is 0.5.

Before we proceed with similar analyses for the remaining study participants’ data, we describe a few more
statistical concepts that are under the hood. The above plot cogently shows that the goal is to determine
which value of k provides the “best fitting line” to the data. For basic analyses, this is frequently accomplished
by least squares. We will focus initially on explaining this approach. Other methods to estimate parameters
include maximum likelihood estimation and Bayesian methods, which have been described in the
context of discounting here (Franck et al. 2023) and here (Franck et al. 2019), respectively.

In order to place a regression line “close” to observed data points, we must have some notion of collective
distance between the set of data points and the line. Our nonlinear least squares approach uses residual
sum-of-squares (RSS) as a notion of distance. RSS is calculated by (i) taking the difference between each
data point and the corresponding point on the regression line with the same delay D, (2) squaring those
individual differences (so everything is positive and points below the line do not ‘cancel out’ points above the
line), and finally (3) adding up these squared differences.

Mathematically,

RSS =
n∑

i=1
(yi − ŷi)2

where n is the sample size, yi is the ith indifference point, ŷi is the value of the regression line corresponding
to the ith indifference point. The large sample operator

∑n
i=1 indicates summation of all squared differences

for the data set.

RSS describes how far a given regression line is from the observed data in a least squares sense. In order to
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find the least squares line, one must search the space of all possible parameter values (k in this problem)
in order to find the value k̂ that produces a line with the smallest possible RSS. The field of mathematics
that studies strategies to determine optimal values of criterion as a function of the criterion’s inputs is called
optimization. The good news is that (i) least squares approaches are mathematically easy to implement for
the Mazur model, and (ii) we have already shown how to use R to obtain optimal k̂ values for discounting
data (using the “nls” function above).

For those who would like more concrete demonstration that we indeed have the best possible line and who
would also like to see some more R code, see the code below.
#define a function that computes RSS on basis of provided k for observed data
RSS<-function(k){

yhat<-1/(1+k*D)
resid<-y-yhat
rss<-sum((y-yhat)ˆ2)
return(rss)

}

k.seq<-seq(0,.01,.0001) #sequence of k values
RSS.seq<-sapply(k.seq,RSS) #sequence of RSS values at each k in sequence
plot(k.seq,RSS.seq,type='l',ylab='RSS',xlab='k',

main="Lowest RSS occurs at estimated k value")
abline(v=k.hat,col='red',lty=3)
optimize(RSS,interval=c(0,100))

## $minimum
## [1] 0.0007296753
##
## $objective
## [1] 0.2734153
#add a legend
legend(x=.002,y=.2,legend=c("RSS as a function of k", "k.hat from previous analysis"),

col=c("black","red"),lty=c(1,3))
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Area under the curve as a measure of discounting

Thus far, we have quantified discounting using the value k from the Mazur equation and ED50. Another
approach which does not assume a specific functional form involves computing area under the discounting
curve (AUC) (Myerson, Green, and Warusawitharana 2001). The idea is to join up the indifference points
with line segments, then calculate the area of the region below this curve. Using the data from subject 1:
plot(D,y, #scatter plot. First argument is horizontal axis, second is vertical axis

xlab='Delay (days)',ylab='Indifference point') # Label axes
lines(D,y)
lines(D,y,type='h',lty=2,col='lightgray')
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It is clear from the above picture that the region under the adjoined line segments consists of adjoined
trapezoids. Computing the area of trapezoids and adding them up is easy, which is why this strategy for
computing area under connect-the-dots style curves is called the trapezoidal rule. (Note that in calculus, the
trapezoidal rule produces close approximations to the area under smooth functions by evaluating the function
on a dense grid, connecting the dots, and adding up the area of the trapezoids). This can be conveniently
obtained in R using the trapz function in the pracma package.

While base R comes with many capabilities, there are also a great number of add-on libraries that can be
accessed free of charge that further extend R’s capabilities. Many available packages are stored on the
Comprehensive R Archive Network (CRAN). If you are connected to the internet, you can access the CRAN
repository by clicking “Tools –> Install Packages. . . ” menu through RStudio, then using the menu options
to choose among available packages. Alternatively, one can use the install.packages(“package_name”)
command in the console to access available packages. If you have a goal in mind but do not know the name of
an R package that meets that goal, then it is usually a good idea to do some Google searching to determine
whether a suitable package is available. In the present case, the pracma package should be obtained and
installed before running the following code.
library(pracma)
trapz(D,y)

## [1] 3100.774

The AUC for these data is is 3100.774.

AUC has some pros and some cons. For pros, it is easy to compute. AUC is directly associated with
discounting since more devaluation of rewards across delays leads to shorter trapezoids which in turn leads to
lower AUC.

AUC is unlike a typical statistical regression approach, because AUC does not attempt to describe an
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underlying function and quantify the departure of observed outcome data (indifference points in this case)
from that function. Thus, the AUC metric is not tied to any specific theoretical framework (to quote the
authors’ abstract). Whether this non-theoretical take on discounting is a pro or con, the availability of AUC is
at minimum a useful empirical benchmark to compare other theoretical models’ quantification of discounting.
There is a practice problem at the end of the chapter that tasks the reader with evaluating the association
among various discounting metrics including AUC.

In terms of cons, AUC alone does not enforce or even evaluate whether rewards are devalued as a function of
delay. A participant whose indifference points are increasing could end up with an AUC value very similar to
a participant who discounts sensibly. A valid straight-line pattern of indifference points decreasing from top
left to bottom right would have the same AUC as an invalid increasing line from bottom left to top right, for
example.

Another downside of AUC is that, as a non-theoretical approach, it is difficult to definitively resolve best
practices on theoretical grounds. For example, an analyst may be concerned that the shorter delays form
trapezoids that are much smaller than the longer delays and thus relatively short delays may be severely
under weighted when computing AUC. This provides useful information in the delay range where rewards
are being devalued rapidly. But this also produces very narrow trapezoid bases, thus arguably the most
important delays play a much smaller role in AUC than the subsequent delays which are spaced out more.
A natural approach to increase the emphasis on early delays might be to compute an area under the curve
metric on the basis of logged delays (Borges et al. 2016), as presented in the code below.
plot(log(D),y, #scatter plot. First argument is horizontal axis, second is vertical axis

xlab='ln(Delay)',ylab='Indifference point') # Label axes
lines(log(D),y)
lines(log(D),y,type='h',lty=2,col='lightgray')

0 2 4 6 8

0.
2

0.
4

0.
6

0.
8

1.
0

ln(Delay)

In
di

ffe
re

nc
e 

po
in

t

13



trapz(log(D),y)

## [1] 6.570705

The analyst who computed AUC on the basis of unlogged delays got 3100.774 in unlogged delay space. The
analyst who was concerned this gave too small weight to the short delays got 6.57 but in logged delay space.
Who is right and who is wrong? I have no idea, and since there is no underlying theory for AUC, decisions
such as these have no definitive resolution. We can just argue about best practices.

Another potential downside is the inability for AUC to quantify error variance in the Stage 1 fit. A hallmark
of statistical reasoning is the notion that observed data are a noisy realization arising from some underlying
data-generating model. Deliberately characterizing observed data with a model with an unrealistically low
estimate of error variance (zero in fact) might be viewed as inelegant.

Don’t we need to complete the above analyses for the remaining 105 participants’ data?

Stage 1 has been focused on obtaining discounting metrics for a participant based on their indifference point
data. Stage 2 will analyze these metrics as a function of other predictors (e.g., determine whether smokers
discount faster than non-smokers on average). Thus, we must automate the Stage 1 analyses so we can
quickly obtain discounting metrics for all participants in the sample before we move on to Stage 2.

Rather than copy-pasting similar commands to those above for each of the 106 participants’ data, we will
instead embed our code in a for loop. A for loop is a general programming technique that allows the user to
repeat a set of user-specified commands for a pre-specified number of iterations. We will see that once the
analysis plan is in place for a single subject, repeating that same analysis a great number of times is actually
easy.

The for loops typically used in analyzing discounting data typically involve defining an index value that
increments at each iteration of the loop. We use the letter i. The index i is typically set to the value one
initially, then it ticks up each iteration. Commands are written to operate on, e.g., the ith individual’s data
(currently the first participant), results are stored for a later-on analysis, the value of i increments to 2, the
same commands are applied to the second participant’s data, and so on until each participant’s data are
analyzed and results stored.

Below find the syntax to make a for loop that captures all participants’ estimated k̂ values. We create an
empty vector called “K.vec”. The shorthand “vec” stands for “vector”. In R, a vector is a list of either
numeric or character variables where the order of the entries is important. In our code, K.vec is initially
empty. The for loop will store the first participant’s estimated k̂ value in the first position of K.vec, the
second participant’s k̂ goes in the second position of K.vec, and so on.
K.vec<-c() #initialize K.vec as an empty vector
for(i in 1:106){ #begin at i=1, do everything in curly brackets, increment i, repeat

y.frame<-dat[i,5:11,drop=FALSE] #pull indifference points for ith participant
y<-as.vector(as.matrix(t(y.frame))) #turn data frame y.frame into vector y
K.vec[i]<-summary(nls(y~(1+K*D)ˆ(-1),start=list(K=.1)))$coef[1,1] #fit Mazur model

#store k estimate
}

With each participant’s value of k̂ stored in the corresponding element of the vector K.vec, let’s examine
these values and confirm that there are indeed 106 of them stored.
#print the k.hat values inside K.vec to the console
K.vec

## [1] 7.052959e-04 1.952525e-02 6.279889e-03 3.106512e+00 9.443459e-04
## [6] 1.183173e-02 7.792406e-03 4.121380e-02 2.166866e-03 1.851430e-03
## [11] 1.835216e-02 6.848412e-02 1.253200e-02 5.644911e-05 3.917017e-03
## [16] 2.750789e-02 9.416390e-03 2.706837e-03 1.158562e-01 2.339159e-04
## [21] 5.654420e-02 1.924157e-02 7.786736e-04 2.225344e-03 1.238148e-02
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## [26] 1.737184e-03 1.006645e-02 6.653795e-02 4.119001e-04 4.115331e-04
## [31] 2.122284e-02 8.613770e-02 1.438784e+00 2.457380e-02 1.087262e-03
## [36] 4.645629e-03 4.105892e-02 9.843393e-03 2.102845e-03 3.947859e-01
## [41] 4.392440e-03 1.043863e-02 5.207565e-03 2.480166e-03 2.890474e-01
## [46] 7.969068e-03 1.041180e-06 1.111135e-02 1.334191e-03 4.690139e-02
## [51] 1.541998e-02 2.656261e-03 2.676365e-03 1.582058e-01 2.288003e-03
## [56] 1.606234e-02 1.598051e-02 5.757535e-02 1.524680e-02 5.524457e-01
## [61] 1.029969e-03 4.620361e-01 1.040897e-02 3.163147e-04 5.727909e-03
## [66] 1.660060e-01 1.531857e-02 5.343197e-01 3.719899e-02 1.558544e-01
## [71] 1.345135e-03 3.329768e-04 4.723152e-05 3.592244e-02 8.398586e-01
## [76] 3.267308e+00 1.283517e-03 2.957418e-02 5.499067e-03 1.423051e-01
## [81] 2.190507e-03 3.898910e-03 6.109505e-04 5.744756e-04 1.192669e-02
## [86] 3.503430e-04 5.695165e-02 1.393875e-02 1.192544e-01 1.404184e-04
## [91] 4.431371e-04 1.813248e-02 3.385442e-03 4.639105e-03 1.151348e-02
## [96] 1.204211e-02 1.318007e-03 5.991004e-03 1.141583e-02 6.315233e-04
## [101] 1.683690e-02 4.873263e-04 4.684651e-03 1.041180e-06 1.500254e-03
## [106] 6.310517e-03
#confirm there are n=106 observations in K.vec
length(K.vec)

## [1] 106
#Add the k.hat values to the data set
dat$k<-K.vec

R uses a specific format for scientific notation to express numbers that are very small or very large. For
example, 7.05e-04 = 7.05 × 10−4 = 0.000705.

Once the above code has been run, the loop is complete and the vector “K.vec” is a length 106 vector where
each element corresponds to that participant number’s k̂ value. Now that k̂ values have been obtained for all
participant data we move on the the second stage of analysis.

Probability discounting

We have focused most of our attention on the analysis of delay discounting data, where we quantify the rate
of devaluation of a reward as a function of delay to that reward. Probability discounting instead quantifies the
rate of devaluation of a reward as a function of the probability of not receiving the reward. For example, in
(Rachlin, Raineri, and Cross 1991), study participants were asked to choose between hypothetical smaller but
certain cash rewards and larger uncertain rewards. For example, $500 for sure or a 50% chance of receiving
$1,000. Such prompts vary the probability of winning, express this probability in terms of odds against, and
use discounting functions to quantify discounting rates. As with delay discounting, a one-parameter hyperbolic
equation has been proposed. Also, like delay discounting, several models for probability discounting have
been proposed. The extent to which probability and delay discounting are comparable phenomena is also a
topic of discussion in the literature. See (Killeen 2023) and the references therein for more discussion.

Stage 2

In Stage 2, we analyze the collection of estimated discounting rates (the k̂ values) for the participants,
including as a function of potential predictors. These estimated discounting rates are considered as data for
the second stage of analysis. For this illustration we will compare discounting rates (i) between males and
females, (ii) between smokers and non-smokers, and (iii) as a function of age. With these goals in mind, we
begin with an exploratory data analysis. Exploratory data analysis typically begins by plotting data. We
consider both univariate plots and also multivariate plots.

A good first rule for exploratory data analysis is to establish which scale of measurement the data are
measured on. There are frequently many potential variables that could be collected with respect to a research
question. For example, in these data, smoking status was measured as a binary yes/no variable. However,
researchers could instead ask how many cigarettes participants smoke in a given week. This latter question

15



would be measured using a numeric variable that would be a whole number greater than or equal to zero.
Analyzing data appropriately on the scale they are measured is a core tenet of a properly conducted analysis.
In this study, we have variables that were measured on a binary scale (smoking status and gender) and two
variables measures on a numeric scale (age in years and discounting rate k̂).

Univariate analyses

We’ll begin our overview of exploratory data analysis by illustrating univariate summaries and graphics.
Univariate approaches focus on understanding each variables’ data alone without any assessment of association
with other variables. We may be interested in, for example, determining the number of participants who are
smokers, how many are male and female, what the distribution of observed ages are, and also the distribution
of observed k̂ values.

We may wish to tabulate the number of participants in each category of our categorical variables.

Note that in R, the dollar sign notation allows the user to specify an object inside another object. In this
case, “dat$gender” reads the “gender” variable out of the “dat” object.
table(dat$gender) #make a table of gender data from the dat object

##
## Female Male
## 27 79
table(dat$smoke_cigs) #make a table of smoking status from the dat object

##
## No Yes
## 52 54

There are 27 females and 79 males in this sample. There are 54 smokers and 52 nonsmokers in this sample.

Now let us consider the distribution of age. Histograms are a useful graphic to show features of a distribution
of numeric data. Histograms organize the range of observed data into bins, then a bar is constructed for each
bin to reflect the number of participants in that bin. We can also compute summary statistics for age.
hist(dat$age,main="Histogram of age",xlab="Age")
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Histogram of age
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summary(dat$age)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 21.00 28.00 31.00 33.49 36.00 67.00

We can see that ages range from 21 to 67 years with a mean age of 33.49 years, etc. The histogram reveals
that the distribution of age is not symmetric. It has a heavier right tail, i.e., it is skewed to the right. The
bars can be interpreted to indicate (for example) that about 14 individuals have an age between 20 and 25.

Let us next consider the distribution of k̂ obtained in Stage 1.
hist(K.vec,main="Estimated k values from n=106 participants",

xlab='k',breaks=20) #make a histogram
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Estimated k values from n=106 participants
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The above histogram shows the 106 estimated k values. It is visually apparent that the distribution of these
k̂ values is skewed right and bounded below by zero. For these reasons, it is customary to analyze k values on
the natural log scale. The R code below also superimposes a normal distribution density function on to the k̂
values. This density curve is centered at the sample mean with sample standard deviation also obtained from
the data.
hist(log(K.vec),main="Estimated ln(k) values from the n=106 participants",

xlab='ln(k)',breaks=20,freq=FALSE)
xbar<-mean (log(K.vec));s<-sqrt(var(log(K.vec)))
ks<-seq(-15,5,.1)
lines(ks,dnorm(ks,mean=xbar,s),col='red')
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Estimated ln(k) values from the n=106 participants
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The above histogram of ln(k) is more symmetric and bell-shaped than the original version, and thus more
suitable for typical statistical analyses which assume data are normally distributed. Analytic approaches
that assume normality include include t-tests and corresponding confidence intervals, analysis of variance
(ANOVA). and typical regression approaches. These rudimentary analyses are presented in most intro
textbooks, but rest assured more sophisticated statistical techniques have been developed and continue to be
developed to model data of every sort no matter the distribution.

A subtle but very important statistical point: the appearance of a bell-shaped curve is typically assumes for
residuals (i.e., the difference between a data point and an average or regression line) rather than the raw data
themselves. To elaborate, the normality assumption requires slightly more than for us to look for a plausible
normal distribution in a univariate histogram. For two-sample t-tests and ANOVA-based approaches, we
presume the outcome variable ln(k̂) is distributed normally within each group. Ordinary regression problems
model the outcome variable ln(k̂) as a function of (potentially several) predictor variables, and the extent to
which individual data points depart from the line (i.e., residuals) are assumed to be normally distributed with
constant variance. We will explore these techniques in more depth subsequently, including an assessment of
whether the appropriate normality conditions hold in an end-of-chapter exercise. It is generally true that
ln(k̂) usually satisfies normality assumptions adequately and certainly more than the k̂ values, and so we can
proceed with these sorts of techniques and models.

Many statistical techniques exist for settings where data are not normally distributed, but many of the
most well-known techniques do assume a normal distribution. For the sake of brevity, we will not consider
alternative techniques in depth. These include non-parametric rank-based procedures, quantile regression,
and other techniques specifically developed to handle non-normal data, such as logistic regression for binary
outcomes. Simple two group comparisons, such as the rank-based Mann-Whitney test are available that do
not assume normally distributed data. However, rank-based tests do not scale up well for multiple predictors.
In these data, a researcher may be interested in modeling delay discounting as a function of smoking status,
gender, and age simultaneously. Rank-based inference is not readily available, even for a small problem like
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this.

Multivariate Analyses

Examining the association among variables is central to scientific and statistical practice. While the above
univariate analyses helped familiarize us with the data and anticipate potential challenges with subsequent
analysis (e.g., needing to log transform the k̂ data), we are centrally interested in the association among the
variables. To proceed, let us consider each pairwise association in these data. With four variables, there are
six pairwise associations.

As with univariate associations, the scales of measurement for each variable imply which graphical approaches
may be sensible. When both variables are numeric, a scatter plot is typically a good choice. When there
is one categorical variable and one numeric variable, we might consider producing a box plot. When both
variables are categorical, mosaic plots are a viable choice. There are a variety of other viable choices as well,
but these three graphics are fundamental.
lnk<-log(dat$k)
plot(dat$age,lnk,xlab="Age")
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cor(dat$age,lnk)

## [1] -0.04820073

The scatter plot does not appear to show a particularly strong relationship between age and ln(k̂). The
cor() function computes the correlation coefficient between two variables, which measures the strength
and direction of the linear relationship and is always between -1 and 1. Negative value show an inverse
relationship and positive values show a direct relationship between the variables. The closer further the
correlation is from zero, the stronger the relationship. Here, we see the correlation is r = −0.048, indicating a
slight negative association in these data.
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par(mfrow=c(2,2)) #Make a 2X2 figure
boxplot(dat$age~dat$gender,xlab="Gender",ylab="Age")
boxplot(dat$age~dat$smoke_cigs,xlab="Smoker",ylab="Age")

boxplot(lnk~dat$gender,xlab="Gender")
boxplot(lnk~dat$smoke_cigs,xlab="Smoker")
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The age box plots indicate that females tended to be older than males in this study, but there was no
substantive difference in age between smokers and non-smokers. The ln(k̂) box plots show a very slight
difference in logged discounting rates, with females in this study slightly higher than males, and smokers
slightly higher than non-smokers.

Mosaic plots can be a useful graphic when multiple categorical variables’ are being considered. A mosaic plot
consists of a series of rectangular regions organized to show the relative size of all combinations of the levels
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of the categorical variables (female smokers, female non-smokers, male smokers, and male non-smokers in this
case). The code below shows this. An upside of the mosaic plot is that it is easy to visually interpret the
areas of rectangles compared for example with the pie-slice regions of a pie chart.
tab<-table(dat$gender,dat$smoke_cigs)
mosaicplot(tab,main='Mosaic plot',xlab='Gender',ylab='Smoker')
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The above mosaic plot re-expresses that smokers and non-smokers are roughly evenly split in these data, that
there are more males than females. The gender split among smokers resembles that among non-smokers (and
the overall split), and similarly, the smoking status split is similar for both genders, suggesting that these
variables do not share much of an association. If, for example, almost all of the smokers were male and the
non-smokers were female, this would be reflected in the plot with very large rectangles in one diagonal, small
rectangles in the other, and would indicate a strong association.

A note about plots

For our demonstration, we will load the “ggplot2” package and the “GGally” package. Both of these packages
provide the user with sophisticated graphical options. The analysis code we are adapting for this example
and related discussion appears here: (https://ggobi.github.io/ggally/reference/ggpairs.html). Once those
have been acquired and installed as described above, the following code will enable their use within R.
library(ggplot2)
library(GGally)

## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2

The function we will use is called “ggpairs”. To read the help file documentation, run the following code, first
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removing the comment symbol.
#?ggpairs

Next we pass a data frame that includes age, gender, smoker, and ln(k̂) to the “ggpairs” function
plot.frame<-data.frame(age=dat$age,gender=dat$gender,smoker=dat$smoke_cigs,lnk=log(dat$k))

plot.ob <- ggpairs(
plot.frame,
upper = list(continuous = "density", combo = "box_no_facet"),
lower = list(continuous = "points", combo = "dot_no_facet")

)
plot.ob
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The above plot summarizes all two-way associations and uses a variety of graphical plotting techniques. It is
rife with visual information. This is a sophisticated example of a pairs plot. In a pairs plot, variables (age,
gender, smoking status, ln(k̂) in this case) indicates the position a variable is summarized in both rows and
columns. The diagonal panels from top left to bottom right are univariate summaries of each variable. All
other panels are bivariate associations, where the reader looks “left-to-right” to learn what is plotted on the
vertical axis and “up-and-down” to determine what is on the horizontal axis.

Starting from the top left and moving across rows, the first panel is a density plot of age. The second and
third panels in the first row are box plots of gender by age and smoking status by age, respectively. The
fourth panel in the first row is a contour plot of ln(k̂) by age.

The first panel in the second row is a jitter plot showing individual data points for age by gender. A small
amount of random noise (i.e., jitter) is added to points on the vertical axis here to help unstack points within
gender groups. The second row second column panel is a bar plot of gender. Next is a mosaic plot of smoking
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status by gender, then an ln(k̂) by gender box plot.

The third row includes a jitter plot of age by smoking status, bar plots of gender by smoking status, bar
plots of smoking status, a bar plot of smoking status, and a box plot of ln(k̂) by smoking status.

The fourth row include a scatter plot of age by ln(k̂), jitter plots of gender by ln(k̂) and smoking status by
ln(k̂), and a univariate density plot of ln(k̂).

Creating useful and beautiful graphics is both a science and an art. The initial plots we made convey core
data analytic insight but are not especially visually appealing and are arguably not a judicious use of space for
most publication venues. (We commonly agonize over attempts to perfect plots for publication.) By contrast,
the “GGally” pairs plot looks sleeker (with many additional plotting options available - see documentation),
but is potentially dense to the point of being hard to digest. Details such as axis labels for the inner bar
plots must be minimized or omitted in order to fit other information. When making plots we recommend
organizing the core plots to emphasize and add clarity to the core points of the writing, and relegate other
potentially useful plots (e.g., the pairs plot above) to an appendix to satisfy extra-curious readers. For the
purpose of teaching the basics, we have opted to include code for fairly simple plots in this chapter. These
plots adequately convey data-analytic insight but are probably not appealing enough to be publication quality
in general.

Descriptive versus inferential statistical approaches

Broadly speaking, statistical statements are Descriptive or Inferential. Descriptive statistics describe
sample data only.
mean(lnk)

## [1] -4.904101

In the above example code, we compute the sample mean ln(k̂) = −4.90. A descriptive interpretation of
this number is “Among the 106 participants in our research study, the average ln(k̂)” value is -4.90.” We
simply summarize what we see in the data, with no suggestion that this statistic is being extended in its
interpretation beyond the sample. While making descriptive statements about the sample is always defensible,
the true goal is usually to try and learn something more fundamental to a larger setting than merely the
research participants at hand.

The true goal of discovering and/or describing fundamental truths underlying data generation involves the use
of inferential statistics. Inferential statistics aim to extend observations from a sample and generalize to the
broader population from which the sample was drawn. For example, if we are studying associations between
smoking and delay discounting, it is not particularly impactful to merely summarize this association in 106
research participants. Instead, we hope we have learned something that extends to the broader population of
smokers. A Statistical Inference is a statement made about the broader population on the basis of data
analyzed from a sample, accompanied by an appropriate probability statement that quantifies uncertainty.

The above schema shows that there is an overall population of interest. It is impractical or impossible
to measure every unit in the population. The major innovation of statistical reasoning is that, when a
representative sample is drawn from the population, statistical methods (derived on the basis of probability
theory) enable analysts to generalize findings from the sample to the broader population with accompanying
statements of uncertainty. Uncertainty is explained using the language of probability.

We will discuss three widely used inferential approaches here: point estimation, confidence intervals, and
hypothesis testing.

Point estimation occurs when the analyst purports that a summary statistic is a “good guess” for the
corresponding population value. Using the above example, the sample mean for ln(k) among smokers is -4.90.
This is a summary statistic based on the sample. However, the moment we say something like “Our best
guess for the true population mean ln(k) is -4.90” we engage in point estimation as a statistical inference
exercise. The notion that a sample statistic is “close to” or “a good guess for” the true but unknown value in
the population (of all smokers in this example) is intuitively appealing and also mathematically justified.
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Figure 2: Statistical inference occurs when probability-based conclusions are drawn about the population on
the basis of a carefully drawn and analyzed set of sample data.

Upper level and graduate courses in statistics use calculus and probability theory to justify formally, for
example, , for example that the sample mean is a good guess for the population mean.

Confidence intervals are derived to ensure that true but unknown population parameters are contained within
the interval with a user-controlled long run rate of success (e.g., we expect 95 out of 100 95% confidence
intervals to contain the true but unknown parameter). Hypothesis tests are derived to have user controlled
rates of obtaining a false positive finding (i.e., type I error), traditionally set to 5% (i.e., α = 0.05). A good
book that develops ideas of statistical inference using calculus while teaching probability theory is (Wackerly,
Mendenhall, and Scheaffer 2014).

Of course, not just any sample is representative of the broader population. The gold standard approach
for obtaining a representative sample is to obtain a random sample. The term “random” has a specific
technical meaning in this context. We do not mean “haphazard,” “chaotic,” or any other colloquial use of the
term “random.”

Instead, random sampling occurs when each element of the population has a chance of being included in
the sample, and a probability-based mechanism is in charge of drawing the sample. You could think about
drawing names out of a really big hat. A Simple random sample is the most conceptually straightforward
design, as it gives every subset of a fixed size the same chance of being selected, thus every member of the
population has the same chance of being included in the sample.

It is easy to discuss drawing a sample completely randomly from a larger population and admiring the simple
elegance and amazing theoretical properties of statistical approaches when this is the case. Reality is messier
than this. It is not easy to obtain a representative sample. It might not be possible to even list every element
in the population (such a list is called the sampling frame), let alone locate all individuals sampled from
that list and ensure every individual selected by the researcher actually enrolls in and completes the study.

I am quite fond of the following “Fundamental Rule for using data for inference,” as it comments on the
viability of applying statistical methods to data even in situations where sampling is not perfect (Utts and
Heckard 2014). This rule is written as follows:

“The fundamental rule for using data for inference is that available data can be used to make inferences
about a much larger group if the data can be considered to be representative with regard to the questions of
interest.”

Samples that are not drawn representatively from a population are broadly known as convenience samples.
Convenience samples can be valuable (e.g., when studying an extremely rare disease, researchers may consider
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themselves lucky to obtain data from anyone with the disease regardless of sampling design). However, when
convenience samples are drawn and their data analyzed, we do have a certain level of skepticism in the
statistical results owing to the potential for unquantifiable bias to manifest in the results.

Another key point is that representativeness is a function of the sampling mechanism, not the sample size.
An ideally drawn random sample is representative of the population even if the sample size is not large. By
contrast, if a flawed sampling design specifically excludes certain segments of the population (e.g., affluent
recreational cocaine users are unlikely to enroll in a discounting study on cocaine users) then merely increasing
the sample size will not overcome bias introduced by the flawed sampling approach. Sampling theory is its
own field within statistics. A good introductory textbook on sampling is (Lohr 2021).

The notion of randomization as a method to ensure valid inference is also ubiquitous within the study of
the design of experiments. Unlike in an observational study, in an experiment, the researcher assigns
experimental units to different treatments. Sophisticated experimental designs can randomize in a way
to account for known confounds (e.g., ensure that members of each socioeconomic stratum are present in
all experimental groups so socioeconomic effects do not mask experimental effects). Even if many known
confounding variables are accounted for in this way, randomization remains essential. Random assignment of
units to treatments is ingenious because randomization makes treatment groups the same on average, both
with respect to known and also with respect to unknown potential confounding variables. A good book for
further reasoning design of experiments is (Montgomery 2008).

Executing Stage 2 analysis using inferential statistics

The exploratory data analysis above is descriptive in nature. We have not (yet) made any assertions that the
patterns in these data extend to a broader population. Next, we will do just this for the three comparisons
of discounting rates (i) between males and females, (ii) between smokers and non-smokers, and (iii) as a
function of age. We will assume our sample data are representative of a relevant larger population. We will
illustrate hypothesis tests and confidence intervals for parameters for each comparison. Like many topics
in this chapter, we provide a brief overview of common techniques appropriate for analysis in this setting.
We assume the reader has been exposed to the basic idea of statistical hypothesis testing and confidence
intervals. For those who may wish to review these concepts, an excellent book to further study the applied
statistical techniques presented here is (Utts and Heckard 2014).

Comparing discounting between males and females
Recall the box plot of estimated ln(k̂) values as a function of sex.
boxplot(lnk~dat$gender,xlab="Gender")
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t.test(lnk~dat$gender)

##
## Welch Two Sample t-test
##
## data: lnk by dat$gender
## t = 0.66633, df = 64.897, p-value = 0.5076
## alternative hypothesis: true difference in means between group Female and group Male is not equal to 0
## 95 percent confidence interval:
## -0.6400485 1.2809533
## sample estimates:
## mean in group Female mean in group Male
## -4.665273 -4.985726

The above code compares males and females in terms of discounting rate. The box plot shows little shift
between the genders, although it visually appears that that males are generating more variability in their
discounting rates. We estimate the average discounting ln(k̂) among females and males to be -4.67 and -4.99,
respectively. The t.test() code conducts a statistical comparison between these groups. The “Welch Two
Sample t-test” phrase indicates that the testing procedure does not assume common variance between the
groups. For the test with null hypothesis of no difference in ln(k) between the groups, the p-value is 0.508.
We fail to reject the null hypothesis, as results as or more extreme against the null would arise half the time
if the null hypothesis is true. (I.e., If there truly is no underlying difference between groups, results such as
those we see here are not particularly improbable.) A 95% confidence interval for the difference in means is
(-0.64, 1.28). Since this interval contains zero, it is plausible that there is no underlying difference between
males and females on the basis of these data.

Using the data in this chapter as an example, we might study the association between smoking status and
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delay discounting as measured by ln(k̂) within this sample, which contains 52 non-smokers and 54 smokers.
We can accomplish this graphically with box plots and in tabular format with summary statistics.

Comparing discounting between smokers and non-smokers
Recall the box plot of estimated ln(k̂) values as a function of smoking status.
boxplot(lnk~dat$smoke_cigs,xlab="Smoking status")
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t.test(lnk~dat$smoke_cigs)

##
## Welch Two Sample t-test
##
## data: lnk by dat$smoke_cigs
## t = -0.96964, df = 95.021, p-value = 0.3347
## alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
## 95 percent confidence interval:
## -1.4765591 0.5074967
## sample estimates:
## mean in group No mean in group Yes
## -5.150938 -4.666407

The box plot above suggests that smokers may have higher discounting rates on average than non-smokers. We
estimate the average discounting ln(k̂) among nonsmokers is -5.15 and among smokers the average discounting
ln(k̂) is estimated to be -4.67 among non-smokers. For the test with null hypothesis of no difference in ln(k)
between the groups, the p-value is 0.334. We fail to reject the null hypothesis, as results as or more extreme
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against the null would arise one third of the time if the null hypothesis is true. A 95% confidence interval
for the difference in means is (-1.48, 0.51). Since this interval contains zero, it is plausible that there is no
underlying difference in discount rate between smokers and non-smokers on the basis of these data.

Assessing discounting as a function of age

Recall the scatter plot with ln(k̂) on the vertical axis and age on the horizontal axis. The following code fits
a simple linear regression model to these data. Simple linear regression proceeds by identifying the straight
line that is “closest” to the data in a least squares sense. We have already seen the idea of least squares with
the nonlinear regression approach we used to fit the Mazur function to indifference point data. As before, the
least squares approach identifies regression lines for which the sum of squared residuals is minimized. In this
simple linear model, the parameters are the slope and y-intercept of the regression line.
plot(dat$age,lnk)
mod<-lm(lnk~dat$age)
abline(mod,col='red',xlab="age",lwd=2)
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summary(mod)

##
## Call:
## lm(formula = lnk ~ dat$age)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.9914 -1.4603 0.1821 1.3617 6.0244
##
## Coefficients:
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## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.42937 0.99637 -4.446 2.2e-05 ***
## dat$age -0.01418 0.02880 -0.492 0.624
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.567 on 104 degrees of freedom
## Multiple R-squared: 0.002323, Adjusted R-squared: -0.00727
## F-statistic: 0.2422 on 1 and 104 DF, p-value: 0.6237
confint(mod)

## 2.5 % 97.5 %
## (Intercept) -6.40520508 -2.45353045
## dat$age -0.07129443 0.04294416

The estimated slope and intercept are -0.014 and -4.429, respectively. This means that for a one year
increase in age, we estimate the average ln(k) decreases (due to negative sign) by 0.014. The mathematical
interpretation of the y-intercept is that individuals with age=0 have an average ln(k) of -4.43. In this case,
it is not meaningful to consider a zero-year-old’s discounting, so direct interpretation of the y-intercept is
basically meaningless. Nonetheless, the y-intercept is important because it governs the overall height of the
line. Don’t omit the y-intercept from the model unless you have compelling scientific information that at
x=0 the outcome y=0 (e.g., x is fuel burned and y is exhaust emitted.)

As before, we may be interested in confidence intervals and hypothesis tests for the parameters of interest.
For reasons we just described, we focus on interpreting these for the slope parameter in this analysis. The
summary() function provides estimates, standard errors, test statistics, and p-values for the null hypothesis
that the corresponding parameter value is zero. In this case, for the age effect, the p-value is 0.624. We fail
to reject the null hypothesis because a slope value of zero is plausible on the basis of these observed data.
This corresponds to the visual evidence in the scatter plot where these data do not appear to show much of a
linear relationship. A 95% confidence interval for the slope is (-0.071, 0.043).

Ordinary regression assumes that residuals have a normal distribution with constant variance. Some of
the exercises at the end of this chapter will guide you through a way to assess the plausibility of these
assumptions.

Regression is one of the most flexible and important classes of statistical techniques. Regression can be
tailored to suit a vast collection of problems. Further topics include multiple regression (i.e., what to do
when multiple predictors are available), model selection (i.e., which predictors should be included and what
function of these best describe the response), regression for outcomes that do not have normally distributed
residuals (i.e., generalized linear models are useful for outcomes with categorical or count outcomes). A good
book to learn more about regression is (Montgomery, Peck, and Vining 2015).

Contemporary issues in statistical practice

There are a number of interesting issues and controversies related to contemporary statistical practice. The
largest-looming of these is the replication crisis. If the goal of science is to uncover and understand observable
truths in the universe, then similar studies should produce similar results. If a well-executed replication study
fails to produce the same conclusions as the original study, then arguably the original study fell short of
finding the correct answer to the research question. Readers in this area are hopefully aware of the replication
crisis in general (Ioannidis 2005) and in psychology specifically (Collaboration 2015). Many factors can
contribute to the failure of a study to replicate, including choices made during experimental design, data
collection and processing, initial exploratory data analysis and modeling. Certainly, a lot of scrutiny has
been given to issues of classical hypothesis testing, including the use of p-values and surrounding practices
(Leek and Peng 2015). (S. S. Young and Karr 2011) describes the situation of scientific publishing based on
statistical significance and p-values as an out-of-control process. In response to these concerns, the American
Statistical Association issued a statement with clarifications and a few suggestions to clarify definitions and
best practices related to p-values (Wasserstein and Lazar 2016). The literature review in (Franck, Madigan,
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and Lazar 2022) describes some of the conversations about statistical hypothesis testing and p-values that
have been tied to the replication crisis. An entire chapter or possibly even a textbook could be filled with
this discussion. The goal here is to outline some issues broadly and describe statistical workflows that are
transparent and responsible.

The previous textbook chapter analyses are not a blueprint for a reasonable analytic strategy
in a research project. Our goal has been to demonstrate a wide variety of relevant methods for analyzing
discounting data. With this focus, we have not articulated a primary analysis strategy. We have not guarded
against problems of multiple comparison, i.e., multiplicity. We have not decided in advance how to handle
participants who fail attention checks or commit Johnson & Bickel violations. Instead, we have conducted a
collection of individual analyses to illustrate each concept in a safe sandbox using data without particularly
strong associations between discounting and other measures. We make no claims about research conclusions
on the basis of the analyses in this chapter. This has been a training ground, and the next exercise is to
think more about how a reasonable analytic pipeline will look for a research project.

Behavior analysis know well that organisms tend to behave in a manner for which they are rewarded. This
extends to scientific publishing as well, where the rewards to publish novel, “statistically significant” research
are compelling. These include rising notoriety, competitive advantage in the pursuit of extramural funding,
and the chance to continue participating in science. The consequences for failing to publish novel research
are punishing and involve either a quick or prolonged exit from a scientific career.

Mix this reward/punishment structure with the historical but controversial bright line rule of declaring any
scientific finding to be “statistically significant” so long as the data analysis yields a p-value below 0.05, and
there is an inherent conflict of interest that incentivizes analysts to select analyses that achieve “statistical
significance” and portraying these results in a manner that failed to acknowledge uncertainty in conclusions.
This process of repeatedly conducting analyses and/or gathering more data, then stopping once an analysis
has a p-value below α = 0.05 is known as p-hacking, and it is problematic because it fundamentally violates
the statistical error rates that come with hypothesis testing.

By way of review, classical hypothesis testing works by controlling the rate at which a false positive finding
occurs. This false positive error rate, also known as the Type I error rate, is set in advance and has traditionally
been α = 0.05. This means that if even in the case where every other aspect of the study is done correctly,
we would reject the null hypothesis in 5% of the cases where it is actually true, i.e., make false positive error.
Note that this traditional threshold has recently been challenged and there are reasonable arguments for
setting α = 0.005 for new discoveries (Benjamin et al. 2018). Thus, the Type I error rate α is the rate at
which an analyst is willing to incorrectly reject a true null hypothesis (which is commonly a hypothesis of no
association although specific null values of parameters can be stipulated).

The idea is that hypothesis testing protects the broader scientific effort from a preponderance of false positive
findings. But if an unscrupulous analyst decides to continually try various analysis plans until a single analysis
yields a p-value below 0.05, then obviously this procedure leads to much higher than a 5% false positive rate.

This conflict of interest can be insidious. Imagine your primary analysis plan calls for using Mazur’s ln(k) as
a discounting metric and examining its association with a key predictor. The statistical analysis reveals a
small association between your predictor and discounting, with a p-value of 0.13. According to this primary
analysis (and a traditional error rate of α = 0.05), the true association is plausibly null, your chances of
publishing in a high-impact journal are low, you have no compelling pilot data for a grant application, and
the clock is ticking on the remaining time in your graduate school/post-doc/faculty position.

Imagine you decide to mess around a little more to get a lower p-value. Suppose switching to a different metric
(e.g., AUC) and eliminating two outliers makes the same analysis yield a p-value of 0.03. Now, the actual
false positive error rate of your procedure is MUCH higher than 5%. You must choose between fundamentally
violating the error rate and publishing your work in a less-than-honest manner (presenting the results as
ironclad), or possibly risking your future in academia if you publish nothing.

The term “p-hacking” refers to deliberately choosing specific analyses that reveal “statistically significant”
associations while deliberately failing to acknowledge that a greater number of statistical tests were conducted
whose results were non-significant, and the choice of which analysis to report was based only on finding an
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analysis with a significant p-value. The incentive to p-hack is that by illegitimately obtaining low p-values,
research findings are presented as though they are more “statistically significant” than the data suggest, more
journals are more likely to look favorably on the findings, and the researcher is able to reap the rewards of
successful publication, albeit at the cost of polluting the literature with findings that are unlikely to replicate,
potentially sending other researchers down faulty lines of inquiry.

One idea to combat this incentive structure is to pursue the idea of preregistered journal articles. The basic
idea with preregistered articles is that a researcher will draft the introduction and methods section (which
fully details the primary analysis plan) for a paper, then submit these to a journal for publication before
collecting and analyzing the data. The journal accepts or rejects the paper based on scientific novelty and
methodological soundness. Then the researcher completes the study and and is guaranteed publication
regardless of the results of the statistical analysis. If an investigation is deemed scientifically sound but does
not yield strong evidence of association for a reasonably powered study, then that should be reported.

Here are three pieces of advice we’d offer to aspiring statistical analysts in the world of behavior analysis:

(1) Pre-plan your primary analysis. Describe everything from data collection, articulation of inclu-
sion/exclusion criteria, how to handle outliers, how missing data will be handled, which models
will be fit, how associations between discounting will be quantified, and which multiplicity adjustments
will be used BEFORE data collection begins. Execute that plan and report the results.

(2) Transparently report all comparisons and secondary analyses you conduct. Of course, data may provide
value and insights beyond what the analyst anticipated with their primary analysis plan. (Imagine if
Alexander Fleming threw away the contaminated Petri dish that led to the discovery of antibiotics!) By
clearly demarcating primary analyses and secondary analyses, and reporting on all analyses attempted,
you acknowledge multiplicity and protect against perceptions of p-hacking. (Relegate low-impact
analysis results to an appendix or online supplement.)

(3) Report and discuss interpretable effect sizes and graphical displays of data. Help the audience understand
the strength of the associations among key variables in your data. Do not merely report p-values and
declare “statistical significance.” A good reference is (Jacob 2007).

Let us also briefly distinguish between replication and reproducibility. A study is replicable if another research
group can redo your study by following your study protocol and obtain the same results and conclusions as
your study. Reproducibility refers to the ability of an analyst with access to your data and code to reproduce
the same results you published on the basis of your data. It is important for analysts to be impeccably
organized in data collection and store all analysis codes for posterity. Increasingly, journals urge authors to
make raw data and analysis scripts public where possible so that claims in articles can be reproduced by
other researchers. More than once in my career I have received requests from researchers for such materials.

Finally, we note that the list of things “not-to-do” is infinity large. Once upon a time at Virginia Tech,
the consulting director asked the design of experiments teacher why nobody has written a book of common
mistakes in study design. To this, the professor responded that such a book could never be completed!

The role of planning in scientific investigation
We have meandered through a number of different topics related to the analysis of delay discounting data. In
order for this chapter to be maximally informative, we have introduced a topic, illustrated it on our example
data set, and then explained the outcome of that investigation. We have had little regard for what topic is
next, how many (i.e., the multiplicity of) statistical comparisons were conducted, or establishing a concrete
primary analysis plan. We believe this is the way to maximize the educational value of the chapter.

In many ways this is the opposite of what should be done when conducting a formal research study. Before
one begins analyzing data, we remind the reader that this has been an instructional textbook chapter not
intended to resemble a typical research analysis. This distinction is important, because when designing a
research study, the analyst must consider many study design issues before data analysis begins. Some of the
specific statistical and data analytic issues are:

(i) Missing data. The reason for the patterns of missing data guides best practices for subsequent analysis.
(Little and Rubin 2014; Allison 2001).
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(ii) Whether and how to pre-screen participant data and how to handle data patterns that diverge sharply
from model form. (e.g., we expect a decreasing trend between valuation and delay but sometimes see a
flat, wildly variable, or increasing trend which seems irrational).

(iii) How to handle outliers and other unusual data points. Even a small number of extreme data points can
greatly influence analysis results. Why are there unusual points and how should they be handled?

(iv) Which models to fit and which methods to fit them. Many competing models have been proposed.
(v) How many comparisons will we make and how to make them? (E.g. smokers versus non smokers?

Number of cigarettes smoked daily?). Failure to account for the effects of multiple testing (i.e.,
multiplicity) leads to greatly increased chances of false positive findings. Deliberately exploiting this
practice is known as “p-hacking.” More discussion of some of these issues and other contemporary
issues and controversies related to statistical analysis can be found in the Contemporary issues in
statistical practice Section above.

To summarize the point, the textbook chapter is designed to impart skills and knowledge one item at a
time. By contrast, research studies are proactively planned by research teams with combined experience in
statistical, behavioral analysis, and other relevant research skills and knowledge.

Continuing your statistical training

This chapter is intended to be an on-ramp for behavior analysts who wish to move towards greater statistical
knowledge. So unfortunately, if we were successful you may feel you are suddenly on a highway with little
idea of what to do next! The machinery here is powerful enough to be dangerous, and we share the statistical
highway with hobbyists, professionals, fools, and charlatans. What we have covered here is just a tiny
introductory piece of the broader statistical field.

To continue the driving example, the best rule is to move carefully and safely at the speed you are comfortable.
If you aren’t sure what to do next, read! Ask! Like any road trip, the more knowledge you have about the
route ahead, the better. Consider the value in finding trusted traveling companions who can help navigate
and drive through challenging parts of the landscape. The biggest surprise about statistics, to me, is how
subtle the field is. I think this is mostly due to the fact humans are not naturally good at understanding
uncertainty, and statistics is all about finding a few crude signals is a world dominated by uncertainty. We
wish the reader the best of luck on this journey, and don’t hesitate to reach out.

Exercises

General questions:

(1) Let’s review the logarithm function more thoroughly. Do you know what the logarithm function looks
like? Take a pen and paper and try to draw the function y = ln(x). Now, write an R program to graph
this function. In what ways is your drawing similar to the R plot? Are there any differences or things
you learned from this activity?

Stage 1 questions:

(2) Consider again the first stage of analysis. We used the Mazur model but another discounting model
that has two parameters was popularized by Howard Rachlin (Rachlin 2006):

E(y) = A

1 + k ∗ Ds
,

where k and s are unknown parameters that must be estimated. Adjust the code that fits the Mazur model
to instead fit the Rachlin model to the first participant’s data. Report the estimated k̂ and ŝ values from the
Rachlin model, and plot indifference points by delay including regression lines for both Mauzr’s and Rachlin’s
model.

(3) Recall that Effective Delay 50 (ED50) is the delay at which a future reward is devalued by half of the
larger later amount. Use algebra to show that the ED50 for the Rachlin model is( 1

k

)1/s

.
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Hint - set right hand size of Rachlin equation in the first problem to A/2, then solve for D.

(4) Estimate ED50 for the first participant’s data using both the Mazur model and also the Rachlin model.
Do these estimates agree to a reasonable extent? Does this corroborate what you see in the plot from
the previous problem? Do you think the agreement between models would be as similar for ED90 (i.e.,
the delay at which 90% of the larger later reward is devalued)? Justify your explanation using the plot
from problem (2).

Stage 2 questions

(5) Report the number of participants who violated one or both Johnson & Bickel criteria (i.e., they have a
value of JBviol=1 in the original data). Report the number of participants who failed the attention
check (i.e., they have a value of ddattend=“$0.00 now” in the original data). Make a two-way table
of these variables and comment on the extent to which those who failed the attention check are also
Johnson & Bickel criteria violators.

(6) Consider an analysis in which violators of the Johnson & Bickel criteria are not analyzed with the full
group in the broader statistical analysis. Subset the data to include only individuals who do not violate
the criteria (i.e., they have a value of JBviol=0 in the original data). Redo the two-stage analyses
presented in the chapter to determine whether our results comparing discounting between smokers
and non-smokers, females and males change, and whether the association between discounting and age
change if Johnson & Bickel criteria violators are omitted from the main analysis.

(7) Write a loop that computes and stores AUC for all subject participants. Make a histogram of these
AUC values. Take the natural log of each AUC value and make a second histogram of these lnAUC
values. Which of AUC and logAUC do you think more closely resembles a normal distribution and
why?

(8) Create a pairs plot that includes Mazur lnk, Mazur ED50, AUC, nnd ln(AUC). Interpret the plot. Does
this plot alone definitively determine which discounting metric is best?

(9) Ordinary regression assumes residuals (i.e. the difference between data points and the corresponding
values on the regression line at the same x values) are normally distributed, and that variance in these
residuals is constant. For the regression problem with ln(k̂) as the outcome and age as the predictor,
use the skills in this book plus a few Google searches to (i) Obtain the predicted values and residuals
from this analysis, (ii) make a histogram of the residuals, and (iii) a scatter plot with predicted values
on the horizontal axis and residuals on the vertical axis. Does it appear that the assumptions are
reasonably satisfied?

Hints for Exercises

Unless otherwise stated, objects in the code below are as defined in the chapter.

(1)

#Log is defined on positive number line
#Make a dense grid of points there
x<-seq(.001,4,.001)
lnx<-log(x)
plot(x,lnx,type='l')
abline(v=1,col='lightgrey',lty=3)
abline(h=0,col='lightgrey',lty=3)
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(2)

i<-1 #Set an index number to 1 for the first subject
y.frame<-dat[i,5:11,drop=FALSE] #ith row, columns 5 through 11
y<-as.vector(as.matrix(t(y.frame))) #Make y a vector
D<-c(1,7,30,90,365,1825,9125) #Define the delays D

#Fit the Rachlin model
Rachlin.mod<-nls(y~1/(1+k*Dˆs),start=list(k=.1,s=.1)) #Fit the Mazur model to these data
summary(mod) #Summary of the fitted model

##
## Call:
## lm(formula = lnk ~ dat$age)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.9914 -1.4603 0.1821 1.3617 6.0244
##
## Coefficients:
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## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.42937 0.99637 -4.446 2.2e-05 ***
## dat$age -0.01418 0.02880 -0.492 0.624
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.567 on 104 degrees of freedom
## Multiple R-squared: 0.002323, Adjusted R-squared: -0.00727
## F-statistic: 0.2422 on 1 and 104 DF, p-value: 0.6237
k.hat<-summary(Rachlin.mod)$coef[1,1]
s.hat<-summary(Rachlin.mod)$coef[2,1]
print("k.hat and s.hat")

## [1] "k.hat and s.hat"
k.hat; s.hat

## [1] 9.418193e-05

## [1] 1.277788
D.s<-seq(0,9500,1) #Create a fine grid across delays. Used later to plot the regression line.
preds.Rachlin<-predict(Rachlin.mod,newdata=data.frame(D=D.s)) #Obtain predicted values
plot(D,y,xlab='Delay (days)',ylab='Indifference point',

main="Indifference points, model fit, and ED50") #Scatter plot
lines(D.s,preds.Rachlin,col='blue') #Add the regression line to the plot
lines(D.s,preds,col='red',lty=2) #Add the regression line to the plot
legend(6000,0.8,legend=c("Mazur","Rachlin"),col=c("red","blue"),lty=c(2,1))
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The parameter estimates are k̂ = 9.4 × 10−5 = .000094 and ŝ = 1.277788. The scatter plot shows the Mazur
fit in a red dashed line and the Rachlin fit in a solid blue line.

(3)
A

2 = A

1 + kDs
, divide both sides by A, then cross multiply

2 = 1 + kDs, subtract 1 from both sides
1 = kDs, divide both sides by k, then exponentiate both sides to the 1/s power( 1

k

)1/s

= D

Thus, the delay D at which the regression line is half the larger later value is
(

1
k

)1/s

. This is the general
process for obtaining analytical solutions for ED50, see (Franck et al. 2015) for more details about ED50 for
different discounting models.

(4)

ED50.Rachlin=(1/k.hat)ˆ(1/s.hat)
ED50.Rachlin

## [1] 1415.088

For the Mazur model, the estimated ED50 value is 1
k̂

= 1418 days (from earlier in chapter). For the Rachlin

model, the estimated ED50 is
(

1
k̂

)1/ŝ

= 1415 days. It is unsurprising that these values are close, because as
the above plot shows, the lines happen to be very close to each other when indifference point =0.5. We do
not expect ED90 values to agree very much, because at an indifference point value of 0.1, these curves are
further apart.

(5)

table(dat$JBviol)

##
## 0 1
## 82 24
table(dat$ddattend)

##
## $0.00 now $100.00 in 1 day
## 6 100
table(dat$JBviol,dat$ddattend)

##
## $0.00 now $100.00 in 1 day
## 0 1 81
## 1 5 19

Twenty four participants violate the Johnson & Bickel criteria. Six individuals failed the attention check by
answering they would rather have zero dollars now instead of one hundred dollars in a day. Five of the six
individuals who failed the attention check also violated Johnson & Bickel criteria.
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(6)

dat.noJB<-dat[dat$JBviol==0,]

The above code creates a data set called dat.noJB which starts as the original dat set, then (using square
bracket notation), only rows with JBbiol=0 are retained (since this condition is before the comma in the
square brackets). Since there is no condition after the comma, this indicates that all columns from dat remain
in dat.noJB. Complete the analysis by using the new data object to perform similar steps to what we saw in
the chapter.

(7)

library(pracma)
AUC.vec<-c() #initialize AUC.vec as an empty vector
for(i in 1:106){ #begin at i=1, do everything in curly brackets, increment i, repeat

y.frame<-dat[i,5:11,drop=FALSE] #pull indifference points for ith participant
y<-as.vector(as.matrix(t(y.frame))) #turn data frame y.frame into vector y
AUC.vec[i]<-trapz(D,y)

}
ln.AUC.vec<-log(AUC.vec)
hist(AUC.vec)
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Histogram of ln.AUC.vec
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Neither really looks like a normal distribution.

(8)

library(ggplot2)
library(GGally)
ED50.Mazur<-1/K.vec
plot.frame<-data.frame(lnk=lnk,ED50=ED50.Mazur,AUC=AUC.vec,ln.AUC=ln.AUC.vec)
plot.ob <- ggpairs(

plot.frame,
upper = list(continuous = "density", combo = "box_no_facet"),
lower = list(continuous = "points", combo = "dot_no_facet")

)
plot.ob
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The above plot visualizes the distributions of and associations among four discouting metrics, but does not
definitively recommend any as intrinsically better than the others. We note an outlier in lnk, and we might
consider log-transforming ED50 in a revision of this plot.

(9)

mod<-lm(lnk~dat$age)
preds<-predict(mod)
resids<-resid(mod)
hist(resids) #Eh good enough
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Histogram of resids
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plot(preds, resids) #*Maybe* some non constant variance
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#probably ok

Both assumptions seem to be reasonably well met, though neither is perfect. I’d personally be comfortable
analyzing the data with the proposed model.
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